Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650362

RESUMO

Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. In this review, we provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged in the in-depth understanding of bud dormancy and offer insights for future studies.

2.
Nat Commun ; 15(1): 1784, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413620

RESUMO

Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fotoperíodo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
3.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526283

RESUMO

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Assuntos
Genes de Plantas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Software , Transcriptoma/genética , Atlas como Assunto
4.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807327

RESUMO

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Assuntos
Laccaria , Micorrizas , Populus , Micorrizas/fisiologia , Árvores/genética , Árvores/metabolismo , Raízes de Plantas/metabolismo , Metilação de DNA/genética , DNA , Populus/metabolismo , Laccaria/genética
5.
Front Plant Sci ; 12: 670497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113369

RESUMO

Perennial species in the boreal and temperate regions are subject to extreme annual variations in light and temperature. They precisely adapt to seasonal changes by synchronizing cycles of growth and dormancy with external cues. Annual dormancy-growth transitions and flowering involve factors that integrate environmental and endogenous signals. MADS-box transcription factors have been extensively described in the regulation of Arabidopsis flowering. However, their participation in annual dormancy-growth transitions in trees is minimal. In this study, we investigate the function of MADS12, a Populus tremula × alba SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1)-related gene. Our gene expression analysis reveals that MADS12 displays lower mRNA levels during the winter than during early spring and mid-spring. Moreover, MADS12 activation depends on the fulfillment of the chilling requirement. Hybrid poplars overexpressing MADS12 show no differences in growth cessation and bud set, while ecodormant plants display an early bud break, indicating that MADS12 overexpression promotes bud growth reactivation. Comparative expression analysis of available bud break-promoting genes reveals that MADS12 overexpression downregulates the GIBBERELLINS 2 OXIDASE 4 (GA2ox4), a gene involved in gibberellin catabolism. Moreover, the mid-winter to mid-spring RNAseq profiling indicates that MADS12 and GA2ox4 show antagonistic expression during bud dormancy release. Our results support MADS12 participation in the reactivation of shoot meristem growth during ecodormancy and link MADS12 activation and GA2ox4 downregulation within the temporal events that lead to poplar bud break.

6.
Front Plant Sci ; 12: 814195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185961

RESUMO

The adaptation and survival of boreal and temperate perennials relies on the precise demarcation of the growing season. Seasonal growth and development are defined by day length and temperature signals. Under long-day conditions in spring, poplar FLOWERING LOCUS T2 (FT2) systemically induces shoot growth. In contrast, FT2 downregulation induced by autumnal short days triggers growth cessation and bud set. However, the molecular role of FT2 in local and long-range signaling is not entirely understood. In this study, the CRISPR/Cas9 editing tool was used to generate FT2 loss of function lines of hybrid poplar. Results indicate that FT2 is essential to promote shoot apex development and restrict internode elongation under conditions of long days. The application of bioactive gibberellins (GAs) to apical buds in FT2 loss of function lines was able to rescue bud set. Expression analysis of GA sensing and metabolic genes and hormone quantification revealed that FT2 boosts the 13-hydroxylation branch of the GA biosynthesis pathway in the shoot apex. Paclobutrazol treatment of WT leaves led to limited internode growth in the stem elongation zone. In mature leaves, FT2 was found to control the GA 13-hydroxylation pathway by increasing GA2ox1 and reducing GA3ox2 expression, causing reduced GA1 levels. We here show that in poplar, the FT2 signal promotes shoot apex development and restricts internode elongation through the GA 13-hydroxylation pathway.

8.
Curr Biol ; 29(14): 2402-2406.e4, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31257141

RESUMO

Day length is a key indicator of seasonal information that determines major patterns of behavior in plants and animals. Photoperiodism has been described in plants for about 100 years, but the underlying molecular mechanisms of day length perception and signal transduction in many systems are not well understood. In trees, photoperiod perception plays a major role in growth cessation during the autumn as well as activating the resumption of shoot growth in the spring, both processes controlled by FLOWERING LOCUS T2 (FT2) expression levels and critical for the survival of perennial plants over winter [1-4]. It has been shown that the conserved role of poplar orthologs to Arabidopsis CONSTANS (CO) directly activates FT2 expression [1, 5]. Overexpression of poplar CO is, however, not sufficient to sustain FT2 expression under short days [5], pointing to the presence of an additional short-day-dependent FT2 repression pathway in poplar. We find that night length information is transmitted via the expression level of a poplar clock gene, LATE ELONGATED HYPOCOTYL 2 (LHY2), which controls FT2 expression. Repression of FT2 is a function of the night extension and LHY2 expression level. We show that LHY2 is necessary and sufficient to activate night length repressive signaling. We propose that the photoperiodic control of shoot growth in poplar involves a balance between FT2 activating and repressing pathways. Our results show that poplar relies on night length measurement to determine photoperiodism through interaction between light signaling pathways and the circadian clock.


Assuntos
Ritmo Circadiano/genética , Fotoperíodo , Proteínas de Plantas/genética , Populus/genética , Proteínas de Plantas/metabolismo , Populus/crescimento & desenvolvimento
9.
Front Plant Sci ; 10: 412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024588

RESUMO

In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in Arabidopsis. Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy. To date, only a few chromatin modification genes, as candidate regulators of these developmental stages, have been functionally characterized in trees. In this work, we summarize the major findings of the chromatin-remodeling role during growth-dormancy cycles and we explore the transcriptional profiling of vegetative apical bud and stem tissues during dormancy. Finally, we discuss genetic strategies designed to improve the growth and quality of forest trees.

10.
Front Plant Sci ; 9: 1030, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057588

RESUMO

Woody perennials adapt their genetic traits to local climate conditions. Day length plays an essential role in the seasonal growth of poplar trees. When photoperiod falls below a given critical day length, poplars undergo growth cessation and bud set. A leaf-localized mechanism of photoperiod measurement triggers the transcriptional modulation of a long distance signaling molecule, FLOWERING LOCUS T (FT). This molecule targets meristem function giving rise to these seasonal responses. Studies over the past decade have identified conserved orthologous genes involved in photoperiodic flowering in Arabidopsis that regulate poplar vegetative growth. However, phenological and molecular examination of key photoperiod signaling molecules reveals functional differences between these two plant model systems suggesting alternative components and/or regulatory mechanisms operating during poplar vegetative growth. Here, we review current knowledge and provide new data regarding the molecular components of the photoperiod measuring mechanism that regulates annual growth in poplar focusing on main achievements and new perspectives.

11.
Plant Cell Environ ; 40(11): 2806-2819, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28810288

RESUMO

The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.


Assuntos
Meristema/enzimologia , Meristema/crescimento & desenvolvimento , Oxirredutases O-Desmetilantes/metabolismo , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Domínio Catalítico , Temperatura Baixa , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Flavonoides/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hippocastanaceae/enzimologia , Hippocastanaceae/genética , Hippocastanaceae/crescimento & desenvolvimento , Meristema/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Estações do Ano
12.
Plant Cell Environ ; 40(10): 2236-2249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707409

RESUMO

Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.


Assuntos
Temperatura Baixa , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Populus/enzimologia , Populus/fisiologia , Desmetilação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Populus/genética
13.
Plant Methods ; 13: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638438

RESUMO

BACKGROUND: Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. RESULTS: Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5' sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. CONCLUSIONS: We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters.

14.
Biotechnol Biofuels ; 10: 110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469706

RESUMO

BACKGROUND: Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene RELATED TO ABI3/VP1 1 (CsRAV1), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers. Given the high plasticity of syllepsis, we established a field trial to monitor the performance of these trees under outdoor conditions and a SRC management. RESULTS: We examined two CsRAV1-overexpression poplar events for their ability to maintain syllepsis and their potential to enhance biomass production. Two poplar events with reduced expression of the CsRAV1 homologous poplar genes PtaRAV1 and PtaRAV2 were also included in the trial. Under our culture conditions, CsRAV1-overexpression poplars continued developing syllepsis over two cultivation cycles. Biomass production increased on completion of the first cycle for one of the overexpression events, showing unaltered structural, chemical, or combustion wood properties. On completion of the second cycle, aerial growth and biomass yields of both overexpression events were reduced as compared to the control. CONCLUSIONS: These findings support the potential application of CsRAV1-overexpression to increase syllepsis in commercial elite trees without changing their wood quality. However, the syllepsis triggered by the introduction of this genetic modification appeared not to be sufficient to sustain and enhance biomass production.

15.
Tree Physiol ; 32(11): 1389-402, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23086811

RESUMO

The availability of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa Mill.) would offer an alternative approach to conventional breeding for production of chestnut trees tolerant to ink disease caused by Phytophthora spp. For the first time, a chestnut thaumatin-like protein gene (CsTL1), isolated from chestnut cotyledons, has been overexpressed in three chestnut somatic embryogenic lines. Transformation experiments have been performed using an Agrobacterium tumefaciens Smith and Townsend vector harboring the neomycin phosphotransferase (NPTII) selectable and the green fluorescent protein (EGFP) reporter genes. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was clearly genotype dependent and ranged from 32.5% in the CI-9 line to 7.1% in the CI-3 line. A total of 126 independent transformed lines were obtained. The presence and integration of chestnut CsTL1 in genomic DNA was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Quantitative real-time PCR revealed that CsTL1 expression was up to 13.5-fold higher in a transgenic line compared with its corresponding untransformed line. In only one of the 11 transformed lines tested, expression of the CsTL1 was lower than the control. The remaining 115 transformed lines were successfully subjected to cryopreservation. Embryo proliferation was achieved in all of the transgenic lines regenerated and the transformed lines showed a higher mean number of cotyledonary stage embryos and total number of embryos per embryo clump than their corresponding untransformed lines. Transgenic plants were regenerated after maturation and germination of transformed somatic embryos. Furthermore, due to the low plantlet conversion achieved, axillary shoot proliferation cultures were established from partially germinated embryos (only shoot development), which were multiplied and rooted according to procedures already established. Transgenic plants were acclimatized and grown in a greenhouse. No phenotypic differences were found with control plants, suggesting no potential cytotoxic effects of the green fluorescent protein. The results reported in the present work could be considered as a first step toward the production of fungal-disease tolerant cisgenic chestnut plants.


Assuntos
Fagaceae/genética , Proteínas de Plantas/genética , Sementes/genética , Transformação Genética , Agrobacterium tumefaciens , Cruzamento , Cotilédone/anatomia & histologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Criopreservação , Cisteína/metabolismo , Fagaceae/anatomia & histologia , Fagaceae/crescimento & desenvolvimento , Expressão Gênica , Vetores Genéticos , Genótipo , Germinação , Proteínas de Fluorescência Verde , Canamicina Quinase/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Árvores
16.
New Phytol ; 194(1): 83-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22229950

RESUMO

• Sylleptic branching in trees may increase significantly branch number, leaf area and the general growth of the tree, particularly in its early years. Although this is a very important trait, so far little is known about the genes that control this process. • This article characterizes the Castanea sativa RAV1 gene, homologous to Arabidopsis TEM genes, by analyzing its circadian behavior and examining its winter expression in chestnut stems and buds. Transgenic hybrid poplars over-expressing CsRAV1 or showing RNA interference down-regulated PtaRAV1 and PtaRAV2 expression were produced and analyzed. • Over-expression of the CsRAV1 gene induces the early formation of sylleptic branches in hybrid poplar plantlets during the same growing season in which the lateral buds form. Only minor growth differences and no changes in wood anatomy are produced. • The possibility of generating trees with a greater biomass by manipulating the CsRAV1 gene makes CsRAV1 transgenic plants promising candidates for bioenergy production.


Assuntos
Genes de Plantas/genética , Hippocastanaceae/genética , Hibridização Genética , Morfogênese/genética , Populus/crescimento & desenvolvimento , Populus/genética , Sequência de Aminoácidos , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento
17.
Plant Cell Environ ; 34(10): 1693-704, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21631532

RESUMO

Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity-dormancy transition.


Assuntos
Aclimatação/fisiologia , Fagaceae/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Plastídeos/genética , Amido/metabolismo , Núcleo Celular/metabolismo , Temperatura Baixa , DNA Complementar/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fagaceae/genética , Fagaceae/ultraestrutura , Microscopia Confocal , Oligossacarídeos/metabolismo , Fotoperíodo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , RNA de Plantas/genética , Estações do Ano , Plântula/genética , Estresse Fisiológico , Fatores de Tempo , Árvores/enzimologia , Árvores/genética , Árvores/fisiologia , Árvores/ultraestrutura
18.
PLoS One ; 3(10): e3567, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18958171

RESUMO

Cold acclimation in woody plants may have special features compared to similar processes in herbaceous plants. Recent studies have shown that circadian clock behavior in the chestnut tree (Castanea sativa) is disrupted by cold temperatures and that the primary oscillator feedback loop is not functional at 4 degrees C or in winter. In these conditions, CsTOC1 and CsLHY genes are constantly expressed. Here, we show that this alteration also affects CsPRR5, CsPRR7 and CsPRR9. These genes are homologous to the corresponding Arabidopsis PSEUDO-RESPONSE REGULATOR genes, which are also components of the circadian oscillator feedback network. The practically constant presence of mRNAs of the 5 chestnut genes at low temperature reveals an unknown aspect of clock regulation and suggests a mechanism regulating the transcription of oscillator genes as a whole.


Assuntos
Aclimatação/genética , Temperatura Baixa , Fagaceae/genética , Regulação da Expressão Gênica de Plantas , Transativadores/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas CLOCK , Ritmo Circadiano/genética , Fagaceae/fisiologia , Genes de Plantas/fisiologia , Filogenia , Proteínas Repressoras , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Proc Natl Acad Sci U S A ; 102(19): 7037-42, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15860586

RESUMO

Circadian clock performance during winter dormancy has been investigated in chestnut by using as marker genes CsTOC1 and CsLHY, which are homologous to essential components of the central circadian oscillator in Arabidopsis. During vegetative growth, mRNA levels of these two genes in chestnut seedlings and adult plants cycled daily, as expected. However, during winter dormancy, CsTOC1 and CsLHY mRNA levels were high and did not oscillate, indicating that the circadian clock was altered. A similar disruption was induced by chilling chestnut seedlings (to 4 degrees C). Normal cycling resumed when endodormant or cold-treated plants were returned to 22 degrees C. The behavior of CsTOC1 and CsLHY during a cold response reveals a relevant aspect of clock regulation not yet encountered in Arabidopsis.


Assuntos
Ritmo Circadiano , Fagaceae/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proliferação de Células , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Dados de Sequência Molecular , Fotoperíodo , Fenômenos Fisiológicos Vegetais , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Estações do Ano , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
20.
Plant Physiol ; 134(4): 1708-17, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15064380

RESUMO

Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.


Assuntos
Aclimatação/fisiologia , Fagaceae/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/genética , Aclimatação/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Fagaceae/genética , Fagaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA